3.3.42 \(\int \frac {\sin ^3(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx\) [242]

Optimal. Leaf size=431 \[ \frac {\cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{\sqrt {b} \sqrt {a+b} d \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )}-\frac {(a+b)^{3/4} \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{b^{3/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}-\frac {\sqrt [4]{a+b} \left (\sqrt {b}-\sqrt {a+b}\right ) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{2 b^{3/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}} \]

[Out]

cos(d*x+c)*(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)/d/b^(1/2)/(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))/(a+b)^(1
/2)-(a+b)^(3/4)*(cos(2*arctan(b^(1/4)*cos(d*x+c)/(a+b)^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*cos(d*x+c)/(a+b)^
(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*cos(d*x+c)/(a+b)^(1/4))),1/2*(2+2*b^(1/2)/(a+b)^(1/2))^(1/2))*(1+cos(d*
x+c)^2*b^(1/2)/(a+b)^(1/2))*((a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)/(a+b)/(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))^
2)^(1/2)/b^(3/4)/d/(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)-1/2*(a+b)^(1/4)*(cos(2*arctan(b^(1/4)*cos(d*x+c
)/(a+b)^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*cos(d*x+c)/(a+b)^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*cos(d*x+
c)/(a+b)^(1/4))),1/2*(2+2*b^(1/2)/(a+b)^(1/2))^(1/2))*(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))*(b^(1/2)-(a+b)^(1/2
))*((a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)/(a+b)/(1+cos(d*x+c)^2*b^(1/2)/(a+b)^(1/2))^2)^(1/2)/b^(3/4)/d/(a+b-2
*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 431, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3294, 1211, 1117, 1209} \begin {gather*} -\frac {\sqrt [4]{a+b} \left (\sqrt {b}-\sqrt {a+b}\right ) \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}{(a+b) \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (\frac {\sqrt {b}}{\sqrt {a+b}}+1\right )\right )}{2 b^{3/4} d \sqrt {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}}-\frac {(a+b)^{3/4} \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}{(a+b) \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (\frac {\sqrt {b}}{\sqrt {a+b}}+1\right )\right )}{b^{3/4} d \sqrt {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}}+\frac {\cos (c+d x) \sqrt {a+b \cos ^4(c+d x)-2 b \cos ^2(c+d x)+b}}{\sqrt {b} d \sqrt {a+b} \left (\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}+1\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^3/Sqrt[a + b*Sin[c + d*x]^4],x]

[Out]

(Cos[c + d*x]*Sqrt[a + b - 2*b*Cos[c + d*x]^2 + b*Cos[c + d*x]^4])/(Sqrt[b]*Sqrt[a + b]*d*(1 + (Sqrt[b]*Cos[c
+ d*x]^2)/Sqrt[a + b])) - ((a + b)^(3/4)*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])*Sqrt[(a + b - 2*b*Cos[c +
d*x]^2 + b*Cos[c + d*x]^4)/((a + b)*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])^2)]*EllipticE[2*ArcTan[(b^(1/4)
*Cos[c + d*x])/(a + b)^(1/4)], (1 + Sqrt[b]/Sqrt[a + b])/2])/(b^(3/4)*d*Sqrt[a + b - 2*b*Cos[c + d*x]^2 + b*Co
s[c + d*x]^4]) - ((a + b)^(1/4)*(Sqrt[b] - Sqrt[a + b])*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])*Sqrt[(a + b
 - 2*b*Cos[c + d*x]^2 + b*Cos[c + d*x]^4)/((a + b)*(1 + (Sqrt[b]*Cos[c + d*x]^2)/Sqrt[a + b])^2)]*EllipticF[2*
ArcTan[(b^(1/4)*Cos[c + d*x])/(a + b)^(1/4)], (1 + Sqrt[b]/Sqrt[a + b])/2])/(2*b^(3/4)*d*Sqrt[a + b - 2*b*Cos[
c + d*x]^2 + b*Cos[c + d*x]^4])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 3294

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Dist[-ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4
)^p, x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sin ^3(c+d x)}{\sqrt {a+b \sin ^4(c+d x)}} \, dx &=-\frac {\text {Subst}\left (\int \frac {1-x^2}{\sqrt {a+b-2 b x^2+b x^4}} \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac {\sqrt {a+b} \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a+b}}}{\sqrt {a+b-2 b x^2+b x^4}} \, dx,x,\cos (c+d x)\right )}{\sqrt {b} d}-\frac {\left (1-\frac {\sqrt {a+b}}{\sqrt {b}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b-2 b x^2+b x^4}} \, dx,x,\cos (c+d x)\right )}{d}\\ &=\frac {\cos (c+d x) \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}{\sqrt {b} \sqrt {a+b} d \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )}-\frac {(a+b)^{3/4} \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{b^{3/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}-\frac {\sqrt [4]{a+b} \left (\sqrt {b}-\sqrt {a+b}\right ) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}{(a+b) \left (1+\frac {\sqrt {b} \cos ^2(c+d x)}{\sqrt {a+b}}\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt [4]{a+b}}\right )|\frac {1}{2} \left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right )\right )}{2 b^{3/4} d \sqrt {a+b-2 b \cos ^2(c+d x)+b \cos ^4(c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.
time = 51.30, size = 89374, normalized size = 207.36 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sin[c + d*x]^3/Sqrt[a + b*Sin[c + d*x]^4],x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 20.52, size = 398, normalized size = 0.92

method result size
default \(-\frac {\sqrt {1-\frac {\left (i \sqrt {a}\, \sqrt {b}+b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \sqrt {1+\frac {\left (i \sqrt {a}\, \sqrt {b}-b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \EllipticF \left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )}{d \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}\, \sqrt {a +b -2 b \left (\cos ^{2}\left (d x +c \right )\right )+b \left (\cos ^{4}\left (d x +c \right )\right )}}-\frac {2 \left (a +b \right ) \sqrt {1-\frac {\left (i \sqrt {a}\, \sqrt {b}+b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \sqrt {1+\frac {\left (i \sqrt {a}\, \sqrt {b}-b \right ) \left (\cos ^{2}\left (d x +c \right )\right )}{a +b}}\, \left (\EllipticF \left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )-\EllipticE \left (\cos \left (d x +c \right ) \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}, \sqrt {-1-\frac {2 \left (i \sqrt {a}\, \sqrt {b}-b \right )}{a +b}}\right )\right )}{d \sqrt {\frac {i \sqrt {a}\, \sqrt {b}+b}{a +b}}\, \sqrt {a +b -2 b \left (\cos ^{2}\left (d x +c \right )\right )+b \left (\cos ^{4}\left (d x +c \right )\right )}\, \left (-2 b +2 i \sqrt {a}\, \sqrt {b}\right )}\) \(398\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^3/(a+b*sin(d*x+c)^4)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/d/((I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2)*(1-(I*a^(1/2)*b^(1/2)+b)/(a+b)*cos(d*x+c)^2)^(1/2)*(1+(I*a^(1/2)*b^(1
/2)-b)/(a+b)*cos(d*x+c)^2)^(1/2)/(a+b-2*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)*EllipticF(cos(d*x+c)*((I*a^(1/2)*
b^(1/2)+b)/(a+b))^(1/2),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2))-2/d*(a+b)/((I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2
)*(1-(I*a^(1/2)*b^(1/2)+b)/(a+b)*cos(d*x+c)^2)^(1/2)*(1+(I*a^(1/2)*b^(1/2)-b)/(a+b)*cos(d*x+c)^2)^(1/2)/(a+b-2
*b*cos(d*x+c)^2+b*cos(d*x+c)^4)^(1/2)/(-2*b+2*I*a^(1/2)*b^(1/2))*(EllipticF(cos(d*x+c)*((I*a^(1/2)*b^(1/2)+b)/
(a+b))^(1/2),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2))-EllipticE(cos(d*x+c)*((I*a^(1/2)*b^(1/2)+b)/(a+b))^(1/2
),(-1-2*(I*a^(1/2)*b^(1/2)-b)/(a+b))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^3/sqrt(b*sin(d*x + c)^4 + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.10, size = 46, normalized size = 0.11 \begin {gather*} {\rm integral}\left (-\frac {{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right )}{\sqrt {b \cos \left (d x + c\right )^{4} - 2 \, b \cos \left (d x + c\right )^{2} + a + b}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="fricas")

[Out]

integral(-(cos(d*x + c)^2 - 1)*sin(d*x + c)/sqrt(b*cos(d*x + c)^4 - 2*b*cos(d*x + c)^2 + a + b), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**3/(a+b*sin(d*x+c)**4)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4847 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a+b*sin(d*x+c)^4)^(1/2),x, algorithm="giac")

[Out]

integrate(sin(d*x + c)^3/sqrt(b*sin(d*x + c)^4 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\sin \left (c+d\,x\right )}^3}{\sqrt {b\,{\sin \left (c+d\,x\right )}^4+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)^3/(a + b*sin(c + d*x)^4)^(1/2),x)

[Out]

int(sin(c + d*x)^3/(a + b*sin(c + d*x)^4)^(1/2), x)

________________________________________________________________________________________